

ЦК КТЭЛА

Раздел І. ФИЗИКО-ХИМИЧЕСКИЕ ОСНОВЫ МАТЕРИАЛОВЕДЕНИЯ

Тема 3.2. Резина и технические изделия на основе резины.

Занятие №1.

Учебные вопросы:

- 1. Общие сведения о резине. Основные свойства резины
- 2. Компоненты резиновой смеси. Технология изготовления резиновых смесей
- 3. Применение резинотехнических изделий
- 4. Особенности хранения резинотехнических изделий

1. Общие сведения о резине. Основные свойства резины

Резинами называют сложные смеси, в которых основным компонентов является продукт вулканизации каучука. Кроме каучука в состав резины входят вулканизатор, ускоритель вулканизации, наполнители, пластификаторы, противостарители, красители и др.

Резина обладает следующими свойствами:

- высокая упругость;
- способна поглощать вибрации;
- хорошая сопротивляемость истиранию;
- сопротивляемость многократному изгибу;
- газо- и гидронепроницаема;
- стойка против воздействия масел, жидкого топлива;
- является диэлектриком.

К недостаткам резины следует отнести старение — изменение физико-механических свойств под действием атмосферных условий.

Основными параметрами резины, характеризующими ее физико-механические свойства, являются:

- предел прочности;
- относительное удлинение в момент разрыва;
- относительное остаточное удлинение;
- твердость (резина условно подразделяется по степени твердости на мягкую M, средней твердости C, повышенной твердости Π);
- коэффициент старения резины (отношение величины относительного удлинения при разрыве образца после нагрева к его первоначальному относительному удлинению), определяемый методом Гира нагреванием образца в термошкафу в течение 144 ч при температуре 70°C;
- коэффициент морозостойкости (отношение удлинения образца при замораживании к удлинению при нормальной температуре), измеряемый при одинаковом напряжении; морозостойкость также определяют по наивысшей температуре охлажденного образца, при которой образец разрушается под ударной нагрузкой;
- стойкость резин к различным жидкостям, определяемая по изменению массы стандартного образца после выдерживания его 24 ч в данной жидкости.

2. Компоненты резиновой смеси. Технология изготовления резиновых смесей

Каучук — это натуральный (НК) или синтетический (СК) полимер, имеющий линейную структуру.

Натуральный каучук представляет собой упругую эластичную массу светло- или темно-коричневого цвета с удельным весом 0,9 г/см³. При нагреве до 50—70°С натуральный каучук размягчается, но при охлаждении вновь становится упругим. Нагрев каучука до 200—230°С вызывает его необратимый переход в жидкую смолообразную массу, не затвердевающую при охлаждении. Получают натуральный каучук из млечного сока (латекса) каучуконосных растений, а синтетический — полимеризацией или сополимеризацией. Сырьем для получения синтетического каучука является спирт или нефть.

Синтетические каучуки можно разделить на две группы: универсальные (бутадиеновый, бутадиенстирольный, бутадиен-нитрольный, изопреновый) и специальные, предназначенные для работы в особых условиях (бутадиеннитрильный, хлоропрено-вый, силиконовый, полисульфидный).

Бутадиеновый каучук (СКБ) является продуктом полимеризации бутадиена в присутствии металлического натрия. Резины на основе бутадиенового каучука отличаются меньшей эластичностью и морозостойкостью, но более высокой прочностью на истирание и большей топлостойкостью, чем резины на основе натурального каучука. Бутадиеновый каучук применяют в резиновых смесях, предназначенных для изготовления уплотнителей, прокладок, ковриков, протекторов топливных баков.

Бутадиенстирольный каучук (СКС) является продуктом полимеризации бутадиена и стирола. Бутадиенстирольный каучук менее прочен, чем натуральный, но прочнее, чем бутадиеновый, отличается от натурального большей стойкостью к истиранию, не уступая при этом в прочности. Бутадиенстирольный каучук обладает хорошей морозостойкостью. Для повышения эластичности в него вводят минеральные масла. Из бутадиенстирольных каучуков изготавливают покрышки, камеры, уплотнители и амортизаторы.

Изопреновый каучук (СКИ) по составу, структуре и эластическим свойствам весьма сходен с натуральным. Получают его полимеризацией изопрена в присутствии лития, литийорганических соединений. По своим эластическим свойствам он близок к натуральному каучуку.

Бутадиеннитрильный каучук (СКН) получают при совместной полимеризации бутадиена и нитрила акриловой кислоты. С повышением содержания нитрила акриловой кислоты увеличивается его стойкость к разрушающему действию топлива и масел, но уменьшается морозостойкость. Из резиновых смесей на основе бутадиеннитрильного каучука изготавливают бензостойкие изделия — тару для масел и топлива, уплотнительные прокладки. Благодаря высокой теплостойкости их применяют для изготовления деталей, работающих при температурах до 140°C.

Хлоропреновый каучук является продуктом полимеризации хлоропрена или его сополимеров с другими мономерами (стиролом). Особенностью хлоропреновых каучуков является их высокая свето- и озоностойкость, огнестойкость и повышенная стойкость к действию топлив и масел. Недостатком хлоропреновых каучуков является их высокий удельный вес (1,25), тогда как обычные каучуки имеют удельный вес меньше единицы. Хлоропреновые каучуки используют для производства ремней транспортных лент и других деталей, в которых они в значительной степени превосходят натуральные каучуки. Хлоропреновые каучуки применяют как изоляционный материал в кабельной промышленности.

Силиконовый каучук (СКТ) представляет собой полисилоксановый, или кремнийорганический каучук, полученный на основе кремнийорганических соединений.

Силиконовый каучук обладает очень высокой тепло- и морозостойкостью (от минус 60 до 250—300°С), а также стойкостью к озону и ультрафиолетовым лучам.

Полисульфидный каучук (тиокол) получают поликонденсацией хлоропроизводных, например дихлорэтана с многосернистым натрием — тетрасульфидом натрия. Полученный

тиокол обладает высокой стойкостью по отношению к топливам и маслам. Недостатками тиоколов является малая прочность, затвердевание при высокой температуре, неприятный запах. Тиоколы применяют для изготовления бензо- и маслобаков, а также уплотнительных материалов в виде паст и замазок.

В обычных условиях каучуки находятся в вязкотекучем или высокопластичном состоянии. Для повышения прочности и уменьшения хладотекучести их подвергают специальной обработке — вулканизации, при которой образуется сетчатая структура. Кроме вулканизатора в резиновую смесь для приготовления из нее изделий вводят наполнители, мягчители, пластификаторы, противостарители, ускорители.

Вулканизирующие вещества — (сера, полухлористая сера, тиурам) применяются для повышения эластичности, прочности и для понижения растворимости резины в органических растворителях.

Наиболее распространенными вулканизирующими веществами являются сера и органические перекиси. Пластичность резиновых изделий зависит от количества вводимого вулканизатора. В резиновые смеси, предназначенные для переработки их в резину, вводят 0,5—5% серы, в сырье резины, предназначенное для переработки в твердую резину (эбонит), — 30—35% серы.

Наполнители — (сажа, каолин, мел, окись цинка, гипс, асбест, регенерат, и др.) применяются для удешевления резины и повышения механических свойств резины. Наилучшим наполнителем является *регенерам* — продукт переработки старых резиновых изделий и отходов резинового производства.

Наполнители подразделяют на активные и неактивные. Для повышения прочности резины в нее вводят активные наполнители: сажу, окись кремния или титана (45—60%). Введение сажи повышает прочность резины в 8—10 раз. При введении сажи в бутадиеновый каучук прочность вулканизаторов повышается в 10—15 раз. В силиконовый каучук вводят окись кремния и окись титана, в натуральный каучук — окись цинка. Введение активных наполнителей особенно важно для синтетических каучуков, обладающих низкой прочностью. В качестве наполнителя применяют также ткани (корд, рукавные ткани), мел, тальк, барат, металлические элементы (кольца, сетки, проволоку и т.д.). Наилучшее сцепление происходит у резины с латунью, поэтому при армировании резины другими металлическими элементами их необходимо предварительно латунировать. Для улучшения сцепления резины с металлическими наполнителями последние можно покрывать специальными клеями.

Смягчители и пластификаторы — (стеариновая кислота, парафин, вазелиновое масло, некоторые растительные масла, сосновая смола и др.) применяют для облегчения смешивания каучука с другими компонентами и для придания морозостойкости и пластичности.

Смягчители и пластификаторы используют для облегчения смешивания компонентов и ускорения приготовления резиновых смесей (2—5%). Мягчители облегчают также адгезию каучука к тканям, способствуют лучшему формозаполнению, повышают морозостойкость и эластичность, уменьшают окисляемость, понижают, горючесть. Пластификаторы повышают эластичность резины, но снижают ее прочность. В качестве мягчителей и пластификаторов применяют дибутилфталат, парафин, церезин, трикрезилфосфат, вазелин, стеариновую и олеиновую кислоты, канифоль.

Противостарители — (воск, парафин, неозон Д и др.) предохраняют резину от быстрого старения. Также в качестве противостарителей используют: церезин, фенолы.

Ускорители вулканизации — (окись свинца, окись магния, тиурам и др.) применяют для сокращения времени и понижения температуры вулканизации.

Для ускорения реакции взаимодействия каучука с серой, а также для сокращения времени и снижения температуры вулканизации в резиновые смеси вводят ускорители. В качестве

ускорителей применяют тиурам и кантакс (0,5—5%). Эффективность действия ускорителей повышается при наличии веществ, называемых активаторами.

Красители — (охра, сажа, окись цинка, и др.) применяют для придания соответствующего цвета.

Технология приготовления резиновых смесей

Процесс изготовления резиновых изделий состоит из трех операций: приготовление резиновых смесей, формование и вулканизация.

Для получения резиновой смеси исходные ингредиенты (мягчители, противостарители, наполнители, вулканизаторы, инициаторы) смешивают на вальцах или в специальных резиносмесителях. Подготовленную смесь пропускают через каландры, состоящие из 3—5 валков. Качество резиновых изделий зависит от равномерного распределения ингредиентов в каучуке и соблюдения оптимальных режимов смещения. Ингредиенты предварительно подготавливают и удаляют влагу. При введении серы в резиновую смесь температура смеси не должна быть выше 115° C, т. е. не выше температуры плавления серы.

Приготовление смеси производят в следующем порядке: сначала в смесь вводят твердые мягчители, а затем жидкие, что способствует их лучшему распределению по объему. После перемешивания в смесь вводят усилители и наполнители. Перед обработкой резиновой смеси ее нагревают до температуры 70—80°С пропусканием через горячие вальцы, затем производят листование резины на трехвалковом листовальном каландре. Если резиновые изделия армируются тканью, то применяют два способа подготовки резиновой смеси — напрессовку и пропитку.

При первом способе подготовки листы резиновой смеси накладывают на ткань, а затем пропускают через специальные каландры. При втором способе ткань пропитывают резиновой смесью и сушат. Для изготовления из резины изделий большой толщины склеивают несколько слоев таких полос.

Переход резины в термореактивное состояние осуществляется в процессе изготовления готовых изделий. Этот процесс называют вулканизацией. При вулканизации каучук реагирует с каким-либо двухвалентным веществом (преимущественно с серой). В результате вулканизации происходит сшивание отдельных макромолекул между собой атомами серы.

3. Применение резинотехнических изделий

Богатый ассортимент изделий из резины применяют практически во всех отраслях народного хозяйства. Каждый тип резины удовлетворяет определенным требованиям. Теплостойкая резина должна быть работоспособной в воздушной среде до 90°С, а в среде водяного пара — до 140°С. Морозостойкая резина должна сохранять свои свойства до минус 45°С. Любая резина должна быть термостойкой от минус 30 до 50°С.

Изделия общего назначения изготавливают из технической листовой резины. Широкое распространение получили выполненные из резины покрышки, шины, приводные ремни, уплотнительные манжеты, транспортные ленты, изоляционные трубки, амортизаторы, прокладки, мембраны и другие изделия, используемые в различных машинах, агрегатах и в быту. Для защиты металлических изделий от коррозии и повышения их износостойкости резину наносят тонким слоем на металлические поверхности. Для образования резиновых покрытий (гумирования) на металлические поверхности предварительно наносят тонкий слой каучукового клея, затем накладывают сырую календрованную резину и подвергают ее вулканизации путем нагрева. Кроме того, на металлические поверхности резиновое покрытие можно наносить распылением, погружением в смесь, кистью и электрофоретическим способом.

С течением времени резина подвергается старению в результате высокой температуры и резкого ее изменения, влияния солнечных лучей и кислорода воздуха, нефтепродуктов, кислот и щелочей.

Учитывая ценные свойства, резина получила широкое применение в авиастроении. Из неё изготовляют:

- пневматики колёс;
- резиновые рукава (шланги);
- мягкие топливные баки;
- амортизаторы;
- профили резиновых прокладок;
- шланги герметизации кабин и т. д.

4. Особенности хранения резинотехнических изделий

Резиновые изделия должны храниться в помещении на деревянных стеллажах на расстоянии не менее 1 м от отопительных сооружений при температуре воздуха 5—15°С и влажности 40—60%. Окна должны быть защищены от попадания дневного света и солнечных лучей.

Покрышки должны быть установлены на ребро в вертикальном положении. Периодически покрышки необходимо переворачивать для изменения точек опоры.

Камеры должны храниться в надутом состоянии ниже нормального давления. При хранении камер в сложенном состоянии линии сгиба должны периодически меняться. Резиновые изделия необходимо пересыпать тальком.