321BT (12)

Законспектировать материал. Фотоотчёт (1 файл) прислать на эл. почту по расписанию

Пропущенные занятия: 12,13.

24.10.24. (15:00 – 16:30) Преобразователи кодов

Преобразователи кодов используются для перевода представления информации из одного кода в другой. Необходимость такого перевода возникает потому, что для представления информации используют различные двоичные и двоично-десятичные коды. Таблицы истинности некоторых кодов для представления десятичных чисел представлены в табл. 12.6.

Синтез преобразователей кодов осуществляется в соответствии с таблицами их функционирования. В качестве примера рассмотрим синтез схемы, преобразующей двоично-десятичный код (8421) в код Айкена (2421). С этой целью каждую переменную кода Айкена будем рассматривать как функцию соответствующих коэффициентов дво-ично-десятичного кода. В этом случае можно в соответствии

с таблицами составить характеристические уравнения для каждой переменной кода 2421. Например, для переменной k_3 имеем:

$$k_3 = \overline{e_3} e_2 \overline{e_1} e_0 + \overline{e_3} e_2 e_1 \overline{e_0} + \overline{e_3} e_2 e_1 e_0 + e_3 \overline{e_2} \overline{e_1} \overline{e_0} + e_3 \overline{e_2} \overline{e_1} e_0.$$

Составив характеристические уравнения для всех переменных кода 2421, можно упростить их по правилам логических преобразований, затем построить структурную схему преобразователя.

Однако более эффективным является метод структурного проектирования с использованием карт Карно. Согласно этому методу составляем карты Карно для переменных k_3 , k_2 , k_1 , k_0 , причем клетки, не заполненные значениями аргументов e_0 - e_3 , заполняем значениями 1 либо 0, делаем соответствующие объединения и записываем минимизированные выражения для переменных k (рис. 12.10).

Таблица 12.6

Десятичное	прямой код				обратный код				Дополнителный				Код Грея				Код 8-4-2-1				Код 2-4-2-1			
Чиспо	a)	a	a.	a	Ъ	b 2	Ъ	Ъ.	C3	C 2	C ₁	C ₀	d	d	d	q	e	e 2	e	e	k	k	14	k
0	0	0	0	0	1	1	ા	1	0	0	.0	0	0	0	0	0	0	0	0	0	0	0	q	0
1	0	0	0	1	1	1	1	0	1	1	1	1	0	0	q	1	0	0	0	1	0	0	q	1
2	0	0	1	0	1	1	0	1	1	1	1	0	0	0	1	1	0	0	1	0	0	0	1	0
3	0	0	1	1	1	1	0	0	1	1	0	1	0	0	1	0	0	0	1	1	0	0	1	1
4	0	1	0	0	1	0	1	1	1	1	0	0	0	1	1	0	0	1	0	0	0	1	q	0
5	0	1	0	1	1	0	1	0	1	0	1	1	0	1	1	1	0	1	0	1	1	0	1	1
6	0	1	1	0	1	0	0	1	1	0	1	0	0	1	q	1	0	1	1	0	1	1	0	0
7	0	1	1	1	1	0	0	0	1	0	0	1	0	1	Q	0	0	1	1	1	1	1	0	1
8 9	1	0	0	0	0	1	1	1	1	0	0	0	1	1	q	0	1	0	0	0	1	1	1	0
9	1	0	0	1	0	1	1	0	0	1	1	1	1	1	q	1	1	0	0	1	1	1	1	1
10	1	0	1	0	0	1	0	1	0	1	1	0	1	1	1	1	-			200	3			\rightarrow
11	1	0	1	1	0	1	0	0	0	1	0	1	1	1	1	0								
12	1	1	0	0	0	0	1	1	0	1	0	0	1	0	1	0								
13	1	1	0	1	0	0	1	0	0	0	1	1	1	0	1	1								
14	1	1	1	0	0	0	0	1	0	0	1	0	1	0	0	1								
15	1	1	1	1	0	0	0	0	0	0	0	1	1	0	0	0	Į.							

,	k					k_0													
e _n e ₁							- 6	ene1			W 22		e ₀ e ₁			e _n e ₁			
e ₂ e ₃	00	10	11	01	e_2e_3	00	10	11	01	e_2e_3	00	10	11	01	e ₂ e ₃	00	10	11	01
00	0	0	0	0	00	0	0	0	0	00	0	0	1	1	00	0	1	1	0
10	0	1	1	1	10	1	0	1	1	10	0	1	0	0	10	0	1	1	0
11	х	Х	х	х	11	х	х	х	х	11	Х	Х	Х	х	11	Х	х	Х	х
01	1	1	х	х	01	1	1	x	x	01	1	1	х	х	01	0	1	х	х

Рис 12.10. Карты Карно для преобразователя кодов

В результате минимизации получим:

$$k_3 = e_3 + e_2e_1 + e_2e_0;$$

 $k_2 = e_3 + e_2e_1 + e_2\overline{e_0}; k_1 = e_3 + \overline{e_2}e_1 + \overline{e_2}e_1e_0; k_0 = e_0.$

Полученные выражения полностью определяют структуру и состав элементов преобразователя. Однако технологически более рациональны структуры, выполненные на однотипных логических элементах, например, на элементах И-НЕ. Структурная схема такого преобразователя представлена на рис. 12.11.

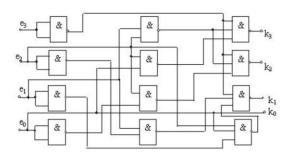


Рис. 12.11. Структурная схема преобразователя кода 8421 в код 2421

Триггеры. Классификация, способы управления.

Триггер — элементарный цифровой автомат G двумя устойчивыми состояниями. Одному из этих состояний присваивается значение 1, а другому 0. Состояние триггера и значение хранимой двоичной информации определяются прямым Q и инверсным Q выходными сигналами. Если на прямом выходе Q имеется потенциал, соответствующий логической 1, то триггер находится в единичном состоянии (при этом потенциал на инверсном выходе Q соответствует логическому 0). В противном случае триггер находится в нулевом состоянии.

Классификация триггеров производится по нескольким признакам: по способам записи и управления информацией, организации логических связей.

По с п о с о б у з а п и с и и н ф о р м а и и и различают асинхронные и синхронные триггеры. В асинхронных триггерах изменение состояния происходит при подаче сигналов на информационный вход (входы) триггера. В синхронных (тактируемых) триггерах имеются кроме информационных входов один или несколько дополнительных для сигналов управления. Состояние таких триггеров изменяется при подаче синхронизирующих (тактирующих) сигналов в соответствии со значением сигналов на информационных входах.

По с n о с o б y y n p a b n e h u h ϕ o p m a u u e u u различают триггеры со статическим, динамическим, одноступенчатым и многоступенчатым управлением.

При *статическом управлении* переключение триггеров вызывается уровнями сигналов, поступающих на информационные входы; при *динамическом управлении* — изменением уровней сигналов на информационных входах. Триггеры с одноступенчатым управлением имеют одну ступень, а с двухступенчатым — две ступени запоминания информации и т. д.

Синхронные триггеры с одноступенчатым запоминанием информации называют *однотактными*, а с двухступенчатым — *двухтактными*.

По способу организации логических связей, определяющих особенности функционирования, различают триггеры RS, T, D, JK и других типов.

Функциональные обозначения триггеров и правила

их изображения в технической документации определяются ГОСТ 2.743—82.

Триггеры различаются типами входов, для которых приняты следующие обозначения:

R (от англ. Reset — сброс) — раздельный вход установки триггера в состояние 0;

S (от англ. Set — установка) - раздельный вход установки триггера в состояние 1;

K (от англ. Kill — внезапное отключение) — вход раздельной установки универсального триггера в состояние 0;

J (от англ. Jerk— включение внезапное) — раздельный вход установки универсального триггера в состояние 1;

T (от англ. Toggle — релаксатор) — счетный вход триггера;

D (от англ. Delay — задержка) — информационный ВХОД установки триггера в состояние, соответствующее логическому уровню на этом входе;

C (от англ. Clock — первичный источник сигналов синхронизации) — исполнительный управляющий (синхронизирующий) вход записи информации в триггер; V (от англ. Valve — клапан, вентиль) — разрешающий, управляющий вход.

Основными параметрами триггеров являются: максимальная длительность входного сигнала, время задержки переключения триггера, разрешающее время триггера.

Рассмотрим свойства лишь наиболее распространенных типов триггеров, используемых при построении сложных логических схем, например таких, как счетчики и регистры.

В таблице переходов, отражающей закон функционирования триггера, будем также обозначать последовательные моменты времени. Момент времени t соответствует состоянию триггера до прихода управляющих сигналов. Момент времени t+1 наступает тогда, когда сигналы на выходе триггера под воздействием сигналов на входах принимают значения, соответствующие последующему состоянию.

Состояние триггера, соответствующее моменту времени t, будем обозначать Q_t , а состояние, которое он принимает в результате воздействия входных сигналов в момент времени (t+1) - Q_{t+1} .

Знак неопределенности «Х» в таблице переходов означает, что такая комбинация входных сигналов считается запрещенной, а следовательно, значение функции таких наборов произвольно.